Introdução à programação com auxílio do ChatGPT

🚀 Primeira transmissão ao vivo do canal! Nesta aula introdutória de programação, vamos aprender como começar a programar do zero com o apoio do ChatGPT e duas IDEs gratuitas: o IDE One e o Google Colab. Você vai entender os conceitos básicos como: O famoso "Olá, Mundo!" em Python. Como usar variáveis (strings e números). Execução de operações matemáticas simples. Cálculo de fatorial de um número. Solução de equações do 2º grau usando código Python. Tudo isso com dicas práticas, explicações claras e demonstrações ao vivo. 💡 Ideal para quem está começando a programar e quer aprender com apoio de ferramentas modernas de IA. Ensinar é multiplicar conhecimento. Compartilhe este vídeo com quem está dando os primeiros passos na programação! Video aula de introdução à programação com o auxílio de ferramentas de Inteligência Artificial (IA) como o ChatGPT e editores de código online, como o Colab e o IDEONE.

Publicado em: 07/05/2025

Duração: PT25M44S

Visualizações: 50

Tags: programming, IA, AI, programação, Introdução à programação, Introdução à programação em Python, programação para iniciantes, Python do zero, aprender a programar, ChatGPT para programar, Google Colab tutorial, IDE One Python, variáveis em Python, fatorial Python, lógica de programação, programação básica, como usar o colab, como usar IDE One, ensinar programação, live aula de programação, iniciando em Python, aula ao vivo programação, chatgpt para iniciantes, IA na educação

Playlist: Programação (Programming)

Voltar para a lista de vídeos

Veja também

Capa do vídeo DreamBooth: Geração de Imagens Personalizadas por Difusão

DreamBooth: Geração de Imagens Personalizadas por Difusão

Criado a partir do artigo DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven Generation Nataniel RuizYuanzhen LiVarun JampaniYael PritchMichael RubinsteinKfir AbermanGoogle Research Resumo DreamBooth é uma abordagem inovadora para personalizar modelos de difusão de texto para imagem, permitindo que eles gerem novas representações de um assunto específico. Ao alimentar o modelo com apenas algumas imagens de referência de um objeto ou ser, ele aprende a associar um identificador único a esse assunto. Isso capacita os usuários a sintetizar imagens fotorrealistas e totalmente novas do assunto em diversos contextos, poses, estilos artísticos e condições de iluminação, mesmo que não estejam presentes nas imagens originais. Essencialmente, DreamBooth permite que você insira um sujeito em sua "cabine de fotos" e o "sintetize onde seus sonhos o levarem". Áudio e narração gerados pelo Notebook LM. Descubra como o modelo DreamBooth revoluciona a geração de imagens personalizadas usando técnicas de difusão de imagem. Neste vídeo, exploramos os fundamentos do modelo, suas aplicações práticas em arte digital, marketing e criação de conteúdo, e como ele pode ser treinado para gerar imagens realistas com base em um conjunto específico de exemplos. Ideal para entusiastas de IA generativa, artistas digitais e desenvolvedores que desejam entender como personalizar modelos de imagem com resultados impressionantes. 🔍 Aprenda: O que é DreamBooth? Como funciona a difusão de imagem? Como treinar modelos personalizados com poucas imagens? Aplicações criativas e profissionais.

Publicado em: 02/07/2025

Duração: PT5M32S

Visualizações: 7

Tags: DreamBooth, geração de imagens, IA generativa, difusão de imagem, inteligência artificial, Stable Diffusion, personalização de modelos, treinamento de IA, arte digital com IA, modelo de difusão, machine learning, deep learning, arte generativa, customização de imagens, imagens realistas IA

Playlist: Artigos científicos em resumo

Capa do vídeo Agrupando Cores com K-Means: Visão Computacional na Prática

Agrupando Cores com K-Means: Visão Computacional na Prática

Apresentação, com Notebook LM, de artigos sobre metodologia de classificação de cores, no contexto da Visão Computacional. Ênfase ao algoritmo de K-Means. Como reduzir milhões de cores de uma imagem sem perder a essência visual? Neste vídeo, exploramos o fascinante mundo da quantização e segmentação de cores, com foco no algoritmo K-Means, aplicado à visão computacional. Você vai entender: Como o K-Means agrupa cores no espaço RGB ou CIELAB Por que ele é tão usado em compressão de imagem, análise de conteúdo e preservação digital Otimizações como WSM (Weighted Sort Means) O modelo POTS, que garante regiões mais coesas Comparações entre diferentes espaços de cor (RGB, HSV, YCbCr, etc.) Casos reais: como arqueólogos usam K-Means para documentar arte rupestre Reflexões sobre o que torna uma cor "essencial" numa imagem 🎨 Seja você designer, programador ou curioso em IA, esse vídeo é um mergulho técnico e acessível na ciência por trás das cores!

Publicado em: 02/06/2025

Duração: PT8M48S

Visualizações: 38

Tags: programação, K-means, Visão Computacional, Modelos de cores, Classificação por cores, clusterização por cores, Detecção automatizada de cores, segmentação de imagem, visão computacional, quantização de cores, ciência de dados, inteligência artificial, imagem digital, compressão de imagem, ciência da computação, algoritmo kmeans, pintura rupestre, processamento de imagem, agrupamento de cores, p5js, arte e IA, cor digital

Playlist: Artigos científicos em resumo

Capa do vídeo Modelos de Difusão em PLN

Modelos de Difusão em PLN

Apresenta-se podcast, criado no Notebook LM, a partir de artigos científicos selecionados, sobre modelos de difusão aplicados no contexto de processamento de linguagem natural (PLN ou NLP).

Publicado em: 26/05/2025

Duração: PT9M13S

Visualizações: 23

Tags: IA, AI, tutoriais, Lógica digital, PLN, Processamento de Linguagem Natural, NLP, modelos de difusão, diffusion models

Playlist: Artigos científicos em resumo

Capa do vídeo Redes neurais com pesos discretos

Redes neurais com pesos discretos

Apresento artigos científicos sobre Redes Neurais Binarizadas (BNNs), um novo tipo de rede neural onde tanto os pesos quanto as ativações são limitados a valores binários (+1 ou -1) durante a execução. Também sobre Redes Neurais Ternárias (TNNs) como uma solução mais eficiente para implementar Redes Neurais Profundas (DNNs) em dispositivos com recursos limitados. As TNNs usam pesos e ativações restritos a {−1, 0, 1}, eliminando a necessidade de multiplicações durante a inferência. Os artigos foram reunidos no Notebook LM, que produziu o podcast ouvido no áudio, além de respostas às questões suscitadas. Vídeo que serviu de inspiração: https://www.youtube.com/watch?v=qTbtcQfFei8 INTELIGÊNCIA ARTIFICAL vai MULTIPLICAR CAPACIDADE com MODELO BITNET 1.58 BIT, mas o que é 1.58 BIT? (Safesrc)

Publicado em: 25/05/2025

Duração: PT8M34S

Visualizações: 19

Tags: IA, AI, tutoriais, redes neurais com pesos discretos, MODELO BITNET 1.58 BIT, Inteligência Artificial, Redes Neurais Ternárias (TNNs), Redes Neurais Binarizadas (BNNs), Ternary Quantization (TTQ), Modelo de Linguagem Grande (LLM), Large Language Model

Playlist: Artigos científicos em resumo

...